МОНГОЛ УЛСЫН ИХ СУРГУУЛЬ

Бидний тухай


Багш ажилтан

 /  Бидний тухай  /  Багш ажилтан /  Дэлгэрэнгүй мэдээлэл

Дэлгэрэнгүй мэдээлэл


Судалгааны чиглэл:
Сүүлийн 3 жилд зааж буй хичээлүүд. Хичээлийн товч агуулга, зорилгыг хуучирсан эсвэл шинэчлэгдээгүй хувилбараар үзүүлж байж болзошгүй.
Харьяалах тэнхим: МУИС, Хс,ММзТ
Индекс: MATH201
Багц цаг: 3

Товч агуулга

Зорилго

Харьяалах тэнхим: МУИС, Хс,ГзФИТ
Индекс: MATH303
Багц цаг: 3

Товч агуулга

Зорилго

Харьяалах тэнхим: МУИС, ББС
Индекс: PROC330
Багц цаг: 3

Товч агуулга

Зорилго

Харьяалах тэнхим: МУИС, Хс,ММзТ
Индекс: MATH305
Багц цаг: 3

Товч агуулга

Энэ хичээлийн агуулга нь I) I эрэмбийн ердийн дифференциал тэгшитгэл (ЕДТ) II) ЕДТ-ээр илэрхийлэгддэг загварууд ба хэрэглээ III) II эрэмбийн ЕДТ IV) Лапласын хувиргалт V) Тогтмол коэффициенттэй ЕДТ-ийн систем VI) Шугаман бус ЕДТ-ийн систем VII) ЕДТ-ийг цуваагаар бодох гэсэн 7 үндсэн сэдвүүдээс бүрдэх ба сэдэв тус бүр дэд хэсгүүдэд задарна. Тухайлбал, эхний үндсэн сэдэв нь дотроо ЕДТ, түүний шийд (цор ганц) оршин байх, хувьсагч нь ялгагддаг тэгшитгэлүүд; II сэдэв нь ЕДТ-ээр загварчлагддаг төрөл бүрийн, хялбар математик хэрэглээнүүд; III сэдэв нь тогтмол коэффициенттэй II эрэмбийн ЕДТ ба систем, тэдгээрийг бодох аргууд; IV сэдэв нь Лапласын хувиргалт, түүний урвуу хувиргалт, ЕДТ-ийг бодоход Лапласын хувиргалтыг ашиглах; V сэдэв нь тогтмол коэффициенттэй ЕДТ-ийн системийг шинжлэх, бодох; VI сэдэв нь шугаман бус ЕДТ-ийн системийг шинжлэх, бодох; VII сэдэв нь Лежандр, Эйлер, Бесселийн тэгшитгэлүүд болон цувааг ашиглан ЕДТ-ийг сингуляр цэгийнх нь орчинд бодох гэсэн дэд хэсгүүдийг агуулна. Эдгээр сэдвүүдийг оюутнуудад аль болох ойлгомжтой байлгах үүднээс олон төрлийн жишээ, зураг, диаграммаар баяжуулан судална.

Зорилго

Энэ хичээл нь байгалийн шинжлэх ухаан түүн дотор цаашдаа физик, математик болон компьютер, инженерчлэлийн чиглэлийн хичээлийг сонгон судлах оюутнуудад зайлшгүй шаардлагатай математикийн суурь хичээлүүдийн нэг юм. Энэхүү хичээлээр оюутнуудад заавал эзэмших ёстой (ердийн) дифференциал тэгшитгэлийн талаарх суурь мэдлэгийг олгохоос гадна дифференциал тэгшитгэлээр илэрхийлэгддэг төрөл бүрийн, хялбар математик загваруудтай танилцана.

Харьяалах тэнхим: МУИС, ББС
Индекс: ICSI202
Багц цаг: 3

Товч агуулга

Зорилго

Харьяалах тэнхим: МУИС, Хс,ММзТ
Индекс: MATH300
Багц цаг: 3

Товч агуулга

Зорилго

Харьяалах тэнхим: МУИС, Хс,ММзТ
Индекс: MATH301
Багц цаг: 3

Товч агуулга

Зорилго





Сул хараатай иргэдэд
зориулсан хувилбар
Энгийн хувилбар