МОНГОЛ УЛСЫН ИХ СУРГУУЛЬ

Бидний тухай


Багш ажилтан

 /  Бидний тухай  /  Багш ажилтан /  Дэлгэрэнгүй мэдээлэл

Дэлгэрэнгүй мэдээлэл


Судалгааны чиглэл:
Сүүлийн 3 жилд зааж буй хичээлүүд. Хичээлийн товч агуулга, зорилгыг хуучирсан эсвэл шинэчлэгдээгүй хувилбараар үзүүлж байж болзошгүй.
Харьяалах тэнхим: МУИС, Шус, Бус, Мт
Индекс: MATH100
Багц цаг: 3

Товч агуулга

Матриц, түүн дээр хийх үйлдлүүд, матрицын тодорхойлогч, тодорхойлогчийг бодох аргууд, шугаман тэгшитгэлийн систем, түүнийг бодох аргууд, матрицын хувийн утга, хувийн вектор, тэдгээрийн хэрэглээ, хавтгайн аналитик геометрын үндсэн элементүүд, хоёрдугаар эрэмбийн мурийнууд, тэдгээрийн хэрэглээ, огторгуйн координатын систем, вектор, түүн дээр хийх үйлдлүүд, олонлог, түүн дээр хийх үйлдлүүд, функц, тоон дараалал ба дарааллын хязгаар, функцийн хязгаар ба тасралтгүй чанар, функцийн уламжлал ба дифференциал,тэдгээрийн хэрэглээ, дифференциал тооллын үндсэн чанарууд, функцийн экстремум,функцийг шинжилж графикийг байгуулах, эх функц, тодорхой биш интеграл ба түүний чанарууд, тодорхой биш интегралыг бодох аргууд, тодорхой интегралын тодорхойлолт, тодорхой интегралыг бодох Ньютон-Лейбницийн томъёо, тодорхой интегралын хэрэглээ, математикийн хэрэглээ

Зорилго

Энэхүү хичээл нь Нийгэм, хүмүүнлэг, хууль, эрх зүйн шинжлэх ухааны салбарт суралцаж амжилт гаргахад дэмжлэг болох математикийн суурь мэдлэгийн үндсийг өгөх, математик сэтгэлгээг хөгжүүлэх, математикийн гоо сайхан болон хэрэглээг таниулах зорилготой. Энэ хичээлээр ерөнхий боловсролын сургуульд үздэг нэг хувьсагчийн функцийн дифференциал болон интеграл тоолол, аналитик геометрын ойлголтуудыг дэлгэрүүлж, хоорондын уялдаа холбоог илүү тодруулж, практик хэрэглээний олон жишээний хамтаар үзнэ.

Харьяалах тэнхим: МУИС, Шус, Бус, Мт
Индекс: MATH601
Багц цаг: 2

Товч агуулга

Вектор огторгуй, Шугаман хувиргалт, Изоморфизмийн теоремууд, Модулиуд суурь ойлголтууд, чөлөөт ба Нётерын модулиуд, гол идеалын муж дээрх модуль, Шугаман операторын бүтэц, Хувийн утгууд ба хувийн векторууд, бодит ба комплекс дотоод үржвэрт огторгуй, Нормал операторуудын бүтцийн онол

Зорилго

Математикийн чиглэлээр цаашид суралцах бүх суралцагчдын үндсэн мэдэж байх ёстой хичээлүүдийн нэг бөгөөд бакалаврын түвшинд үзсэн элементар шугаман алгебрт тулгуурлан илүү абстракт түвшинд шугаман алгебрын үндсэн ойлголтуудыг судалж түүн дээрээ тулгуурлан алгебр, тополог, геометр, анализийн дээд түвшний бусад мэдлэгүүдийг эзэмших чадвартай болгоно.





Сул хараатай иргэдэд
зориулсан хувилбар
Энгийн хувилбар