Бидний тухай
Багш ажилтан
A high-resolution enhanced point light source integral imaging display is proposed. Using additional light sources to create extra point light sources in the point light source plane, the point light sources appeared on the plane that deviated from the expected values because of aberrations in the lens. Previously, only the lens array aberration was corrected and the distance along the horizontal and vertical axes was corrected too. The objective of this paper is to simultaneously correct the aberration between the lens array and the collimating lens, plus the horizontal and vertical axes, and correct the error along the z-axis. So, we determined the distance between the central light source and the additional light source to compensate for lens aberrations. From the experimental results, our technique precisely increased the resolution 3 times in both vertical and horizontal dimensions when compared to a traditional point light source display. Our method is applicable to 3D displays and compensates for the lens array and collimating lens aberrations.
Цэгэн гэрэл үүсгэгч (ЦГҮ) дэлгэцэд нэмэлт гэрэл үүсгэгчдийг байрлуулан ЦГҮ-ийн тоог нэмэгдүүлж хоорондын зайг багасгаснаар ЦГҮ дэлгэцийн нягтшилыг сайжруулах боломжтой боловч линзийн гажгаас шалтгаалан ЦГҮ нь өөр өөр зайд үүсдэг. Үүнээс шалтгаалаад гажилттай гурван хэмжээст (3D) дүрсийг үүсгэдэг. Гурван хэмжээст дүрсийн гажгийг засахын тулд гэрэл үүсгэгчдийн хоорондын зайг өөрчлөх шаардлага тулгардаг. Тооцоолсноос өөр зайд ЦГҮ үүсдэгээс хоорондын зай жигд биш болдог. Иймд хоорондын зайг засахын тулд нэмэлт гэрэл үүсгэгч болох Light Emitting Diode (LED)-ийн хоорондын зайг өөрчилдөг. Нэмэлт гэрэл үүсгэгчийн хоорондын зайг туршилтын үр дүнгээр олдог тул өөрчлөх бүрдээ шинэ хавтан идүүлэх, засаж шинээр гагнадаг нь дэлгэцийн технологийн хувьд өртөг өндөртэй ашиглах боломжгүй шийдэл болдог дутагдалтай. Бидний дэвшүүлж буй арга нь ЦГҮ дэлгэцийн гэрэл үүсгэгчээр динамик удирдлагатай гэрэл үүсгэгчийг Liquid Crystal Display (LCD) дээр хэрэгжүүлэн ашигласан. Нэмэлт гэрэл үүсгэгчүүдийг LCD ашиглан хэрэгжүүлснээр гэрэл үүсгэгчдийн хэмжээ, тоо, хоорондын зайг дурын хэмжээнд өөрчлөх боломжтой болсон бөгөөд өндөр нягтшилтай ЦГҮ дэлгэцийн үүсгэсэн 3D дүрсийн алдааг зассан.
Цэгэн гэрэл үүсгэгч (ЦГҮ) дэлгэц нь хар цагаан Spatial Light Modulator (SLM) ашигладаг учраас хар цагаан гурван хэмжээст (3D) дүрс үүсгэдэг. Өндөр үнэтэй өнгөт SLM ашиглахгүйгээр хар цагаан 3D дүрс үүсгэдэг ЦГҮ дэлгэцийн гэрэл үүсгэгчийн өнгийг улаан, ногоон, цэнхэр (RGB) болгосноор хар цагаан ЦГҮ дэлгэц нь өнгөт 3D дүрсийг үүсгэдэг болох юм. Хоёр болон түүнээс дээш тооны ялгаатай өнгийн 3D дүрс үүсгэдэг өнгөт ЦГҮ дэлгэцийг хэрэгжүүлэхдээ RGB гэрэл үүсгэгчийн өнгө болон SLM-д үзүүлэх Elemental Image (EI)-үүдийг 15 Гц давтамжтайгаар синхрон удирдаж ажиллуулсан. Ингэснээр хүний нүд ялгаатай өнгөтэй 3D дүрсүүдийг харж чадсан. Бид RGB гэрэл үүсгэгч ашиглан түүнийг SLM-тэй синхрон удирдсанаар өнгөт ЦГҮ дэлгэцтэй болсон бөгөөд өнгөт SLM ашиглаагүй учраас бага өртгөөр, хялбар аргаар шийдвэрлэсэн давуу талтай.
The point light sources (PLSs) of integral imaging displays have a wide depth range; however, the resolution is very low. We developed resolution-enhanced PLS displays using multiple light sources that create extra PLSs in the PLS plane. Given aberrations in the lens arrays, the PLSs initially appeared on planes and at distances that differed from the theoretical values. We thus determined the distances between adjacent light sources that compensated for the aberrations. Experimentally, our method enhanced the resolution fourfold compared to that of a conventional PLS display in both vertical and horizontal directions. Our approach allows facile compensation of lens array aberrations and is applicable to 3D displays.
It is difficult to find the micromirror array with desired specifications for augmented-reality displays, and the custom fabricating methods are complicated and unstable. We propose a novel, to our knowledge, three-dimensional see-through augmented-reality display system using the holographic micromirror array. Unlike the conventional holographic waveguide-type augmented-reality displays, the proposed system utilizes the holographic micromirror array as an in-coupler, without any additional elements. The holographic micromirror array is fabricated through the simple, effective, and stable method of applying the total internal reflection-based hologram recording using a dual-prism. The optical mirror and microlens array are set as references, and the specifications can be customized. It reconstructs a three-dimensional image from a displayed elemental image set without using any additional device, and the user can observe a three-dimensional virtual image while viewing the real-world objects. Thus, the principal advantages of the existing holographic waveguide-type augmented-reality system are retained. An optical experiment confirmed that the proposed system displays three-dimensional images exploiting the augmented-reality system simply and effectively.
Гурван хэмжээст (3D) дэлгэцийн нэг төрөл болох нийлмэл дүрсэн дэлгэцийн гүний хэмжээ нь бага буюу хэрэглэгчийн шаардлага хангахгүй байна. Тиймээс энэ судалгааны ажлаар гүний хэмжээг ихэсгэх шинэ арга танилцуулна. Гүнийг ихэсгэхийн тулд уламжлалт нийлмэл дүрсэн дэлгэцийн линз матрицтай ижил хэмжээтэй хаалтыг нэмж байрлуулсан. Сарниулагч дээр үүсэж байгаа дүрсийг ажиглаж гүний хэмжээ хэрхэн өөрчлөгдөж байгааг судалсан. Туршилтын үр дүнгээс харахад 3D дүрс нь төвөөсөө зах уруу жигд бөгөөд тод үүсэж байгаагаас дэвшүүлж буй шинэ арга нь гүний хэмжээг ихэсгэж байна. Зөвхөн хаалт байрлуулсан энэ арга нь хямд бөгөөд хялбар арга учир ирээдүйд өргөн ашиглах боломжтой.
Гурван хэмжээст (3D) Цэгэн гэрэл үүсгэгч (ЦГҮ) дэлгэцийг томоор хийхэд зузаан, нүсэр болох дутагдалтай. Энэхүү судалгааны ажлаар уламжлалт 3D ЦГҮ дэлгэцийн бүтцийг өөрчлөх буюу SLM-ийг цуглуулагч линз болон линз матриц хооронд байрлуулан нимгэн ЦГҮ дэлгэцийн шинэ арга боловсруулна. Уламжлалт ЦГҮ дэлгэцийн бүтцийг өөрчилсөн шинэ аргын Elemental Image-ийг үүсгэх тооцоолол хийж туршсан. Туршилтын үр дүнд шинэ арга нь ЦГҮ дэлгэцийн үзүүлэлтүүд болох харагдах өнцөг болон нягтшилын хувьд уламжлалт ЦГҮ дэлгэцийн үүсгэсэн 3D дүрстэй ижил 3D дүрсийг үүсгэсэн. Бидний дэвшүүлж буй шинэ арга нь уламжлалт ЦГҮ дэлгэцийн бүтцийг өөрчилсөн ч эцсийн үр дүн ижил бөгөөд ЦГҮ дэлгэцийн зузааныг багасгаж томоор хийх боломжтой, нимгэн ЦГҮ дэлгэцтэй болсон давуу талтай.
Integral imaging (InIm) is one of the most promising technologies for producing full color three-dimensional (3D) images with full parallax. However, the depth of the InIm display is shallow. We proposed a method to enhance the depth of InIm display using static barrier array. We created the barrier array the same size as the lens array and put it in front of the lens array. Observed the image on the diffuser, a clear 3D image is created. From the experimental results, the depth of the InIm display is enhanced.
Three-dimensional (3D) Point Light Source (PLS) display have the disadvantage of being thick and bulky when enlarged. In this paper, modified the conventional 3D PLS display structure. A proposed method of thin PLS display has been developed by placing the SLM between the collimating lens and the lens array. An experiment was performed to create an Elemental Image of the proposed method that changed the structure of the conventional PLS display. As a result of the experiment, the proposed method created a 3D image similar to the 3D image created by the conventional PLS display in terms of viewing angle and resolution, which are the parameters of the PLS display. The proposed method we are proposing changes the structure of the conventional PLS display, but the result is the same, with the advantage of having a thinner PLS display that can be made larger by reducing the thickness of the PLS display.
Integral Image is one of methods to show 3D image. To research more, we need to find the position of Integral Images or in our case characters. It will be useful to recognize or reconstruct the 3D object, like 2D to 3D content conversion. To make it possible we must have character recognition system [1] [2] [3]. First, we recognize Mongolian character image by deep learning, a Convolutional Neural Network (CNN). The dataset for deep learning we collected 500 fonts, and 80 characters from one font, the sum of the dataset is 40000 characters. Split dataset into 2 section training, validation sets. Validation result is 94%. Then we tested on 3D character Integral Images. Recognition percentage was 34%. Thus, we trained the machine learning model in a different font, and then tested the 3D In-tegral Image.
The Point Light Source (PLS) display is one kind of Integral Imaging that is the three-dimensional (3D) display. Limitations of the PLS display include those regarding the viewing angle and the resolution. A PLS display with the high resolution is proposed. We used the light source array (3 × 3) to increase the resolution of the PLS in the horizontal and vertical directions. From the experimental results, the proposed method enhances three times higher than conventional PLS display
A point light source (PLS) display with enhanced viewing angle (VA) is proposed. The maximum VA of a conventional PLS display is equal to the propagation angle of the PLS, so a light-source array (3×3) was used to enlarge the propagation angle of the PLS in the horizontal and vertical directions. The number of converging elemental image points increases due to the large propagation angle of the PLS; thus, the VA of the integrated point was enhanced. From the experimental results, the VA of the proposed method was 2.6 times larger than the maximum VA of a conventional PLS display.
While the viewing angle (VA) is an important parameter of three-dimensional (3-D) displays, a method has not yet been devised to determine the VA. We proposed a new approach to determine a VA of an integral imaging display. An integrated point appears at the cross section between collected rays and a lens array; the VA of the integrated point is thus equal to the angle between the two farthest rays. This approach is useful to determine the VA of all 3-D displays, because a 3-D point appears in the cross section of collected rays. The result of this study showed that the VA depends on the position of the integrated point and is smaller than the VA of the conventional calculation.
While the viewing angle (VA) is an important parameter of three-dimensional (3-D) displays, a method has not yet been devised to determine the VA. We proposed a new approach to determine a VA of an integral imaging display. An integrated point appears at the cross section between collected rays and a lens array; the VA of the integrated point is thus equal to the angle between the two farthest rays. This approach is useful to determine the VA of all 3-D displays, because a 3-D point appears in the cross section of collected rays. The result of this study showed that the VA depends on the position of the integrated point and is smaller than the VA of the conventional calculation.
A new method to determine a viewing angle of the integral imaging display is proposed. The viewing angle is equal to an angle between the farthest edges of collecting rays on integrated point. This method is useful to determine the viewing angle of other three-dimensional display.
Integral imaging (InIm) is an interesting research area in the three-dimensional (3-D) display technology. While it is simple in structure, it shows full color and full parallax 3-D images without the necessity of special glasses. InIm display usually uses the simplest lens array, and hence displayed 3-D image suffers from distortions. A dominating distortion is a Petzval curvature. To the authors' best knowledge, we have firstly analyzed an effect of the Petzval curvature in InIm display. The immediate consequence of Petzval curvature is that the depth plane of InIm display becomes a curved plane array. Using simulation, the effect of Petzval curvature is found to reduce the depth range, change the viewing direction, and increase the black stripe. The result indicates that the lens array in the InIm display should be customized to reduce these undesirable effects.
Integral imaging (InIm) is an interesting research area in the three-dimensional (3-D) display technology. While it is simple in structure, it shows full color and full parallax 3-D images without the necessity of special glasses. InIm display usually uses the simplest lens array, and hence displayed 3-D image suffers from distortions. A dominating distortion is a Petzval curvature. To the authors' best knowledge, we have firstly analyzed an effect of the Petzval curvature in InIm display. The immediate consequence of Petzval curvature is that the depth plane of InIm display becomes a curved plane array. Using simulation, the effect of Petzval curvature is found to reduce the depth range, change the viewing direction, and increase the black stripe. The result indicates that the lens array in the InIm display should be customized to reduce these undesirable effects.
While the viewing angle (VA) is an important parameter of three-dimensional (3-D) displays, a method has not yet been devised to determine the VA. We proposed a new approach to determine a VA of an integral imaging display. An integrated point appears at the cross section between collected rays and a lens array; the VA of the integrated point is thus equal to the angle between the two farthest rays. This approach is useful to determine the VA of all 3-D displays, because a 3-D point appears in the cross section of collected rays. The result of this study showed that the VA depends on the position of the integrated point and is smaller than the VA of the conventional calculation.
We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.
A three-dimensional integral-floating display with 360 degree horizontal viewing angle is proposed. A lens array integrates two-dimensional elemental images projected by a digital micro-mirror device, reconstructing three-dimensional images. The three-dimensional images are then relayed to a mirror via double floating lenses. The mirror rotates in synchronization with the digital micro-mirror device to direct the relayed three-dimensional images to corresponding horizontal directions. By combining integral imaging and the rotating mirror scheme, the proposed method displays full-parallax three-dimensional images with 360 degree horizontal viewing angle.
An enhanced 360-degree integral-floating three-dimensional display system using a hexagonal lens array and a hidden point removal operator is proposed. Only the visible points of the chosen three-dimensional point cloud model are detected by the hidden point removal operator for each rotating step of the anamorphic optics system, and elemental image arrays are generated for the detected visible points from the corresponding viewpoint. Each elemental image of the elemental image array is generated by a hexagonal grid, due to being captured through a hexagonal lens array. The hidden point removal operator eliminates the overlap problem of points in front and behind, and the hexagonal lens array captures the elemental image arrays with more accurate approximation, so in the end the quality of the displayed image is improved. In an experiment, an anamorphic-optics-system-based 360-degree integral-floating display with improved image quality is demonstrated.
Abstract— A new approach to resolution enhancement of an integral-imaging (II) three-dimensional display using multi-directional elemental images is proposed. The proposed method uses a special lens made up of nine pieces of a single Fresnel lens which are collected from different parts of the same lens. This composite lens is placed in front of the lens array such that it generates nine sets of directional elemental images to the lens array. These elemental images are overlapped on the lens array and produce nine point light sources per each elemental lens at different positions in the focal plane of the lens array. Nine sets of elemental images are projected by a high-speed digital micromirror device and are tilted by a two-dimensional scanning mirror system, maintaining the time-multiplexing sequence for nine pieces of the composite lens. In this method, the concentration of the point light sources in the focal plane of the lens array is nine-times higher, i.e., the distance between two adjacent point light sources is three times smaller than that for a conventional II display; hence, the resolution of three-dimensional image is enhanced.
An integral floating display (IFD) with a long depth range without floating lens distortion is proposed. Two lenses were used to reduce barrel distortion of the floating lens and three‐dimensional (3‐D) image deformation from object‐dependent longitudinal and lateral magnifications in the floating‐display system, combined with an integral imaging display. The distance between the floating lenses is the sum of their focal lengths. In the proposed configuration, lateral and longitudinal magnifications are constant regardless of the distance of the integrated 3‐D images, so the distortions from the distant‐dependent magnifications of the floating lens do not occur with the proposed method. In addition, the proposed floating system expands the depth range of the integral imaging display. As a result, the display can show a correct 3‐D floating image with a large depth range. Experimental results demonstrate that the proposed method successfully displays a 3‐D image without floating lens distortions across a large depth range.
A novel technique for synthesizing a hologram of three-dimensional objects from multiple orthographic projection view images is proposed. The three-dimensional objects are captured under incoherent white illumination and their orthographic projection view images are obtained. The orthographic projection view images are multiplied by the corresponding phase terms and integrated to form a Fourier or Fresnel hologram. Using simple manipulation of the orthographic projection view images, it is also possible to shift the three-dimensional objects by an arbitrary amount along the three axes in the reconstruction space or invert their depths with respect to the given depth plane. The principle is verified experimentally.
A method enhancing the depth discrimination of the computational integral imaging is proposed. The proposed method captures two sets of the elemental images under random pattern and regular uniform illumination. The captured two sets of real-valued elemental images are coded into one set of the complex-valued elemental images. Finally, the depth section image of the objects is reconstructed by applying computational integral imaging technique to the generated complex-valued elemental images. Experiment and simulation results show that the proposed method enhances the depth discrimination of the depth sectioning by suppressing blurred images in off-focused planes.
A viewing angle enhanced integral imaging display using two elemental image masks is proposed. In our new method, rays emitted from the elemental images are directed by two masks into corresponding lenses. Due to the elemental image guiding of the masks, the number of elemental images for each integrated image point is increased, enhancing the viewing angle. The experimental result shows that the proposed method exhibits two times larger viewing angle than the conventional method with the same lens array.
We propose a new synthesis method for the hologram of 3D objects using incoherent multiple orthographic view images. The 3D objects are captured and their multiple orthographic view images are generated from the captured image. Each orthographic view image is numerically overridden by the plane wave propagating in the direction of the corresponding view angle and integrated to form a point in the hologram plane. By repeating this process for all orthographic view images, we can generate the Fourier hologram of the 3D objects.
A novel technique generating arbitrary view images in perspective and orthographic geometry based on integral imaging is proposed. After capturing three-dimensional object using a lens array, disparity estimation is performed for the pixels at the selected position of each elemental image. According to the estimated disparity, appropriate parts of elemental images are mapped to synthesize new view images in perspective or orthographic geometry. As a result, the proposed method is capable of generating new view images at arbitrary positions with high resolution and wide field of view.
In this paper, we present a floating image system that consists of a stereoscopic display and a two-lens system. A 3-D image is produced inside of the stereoscopic display and that image is projected into the air by the two-lens system. From the experimental results, our proposed system successfully produces the 3-D image, without the distortion and the defects, in midair so that image is a 3-D floating imag
The proposed technique uses a combination of two systems, viz. a three dimensional stereoscopic system and a two-lens system. This novel combined system successfully produces a stereoscopic floating image in mid air near the observer. The two-lens system produces a floating image from the stereoscopic image originating from the stereoscopic system, and the two lenses eliminate the defects of the floating lens and concave mirror. The experimental results show that the two lenses eliminate the defects of the lens and the concave mirror, so that the proposed system successfully produces a touchable stereoscopic floating image.